What is BASIC?

At the end of this topic you will:

  • key developments in computing
  • explore what code can do
  • how programming works in real life
  • writing basic code

WHY PROGRAMMING?

You may already have used software, perhaps for word processing or spreadsheets, to solve problems. Perhaps now you are curious to learn how programmers write software. A program is a set of step-by-step instructions that directs the computer to do the tasks you want it to do and produce the results you want

There are at least three good reasons for learning programming:

Programming helps you understand computers. The computer is only a tool. If you learn how to write simple programs, you will gain more knowledge about how a computer works.

Writing a few simple programs increases your confidence level. Many people find great personal satisfaction in creating a set of instructions that solve a problem.

A set of rules that provides a way of telling a computer what operations to perform is called a programming language. There is not, however, just one programming language; there are many. In this chapter you will learn about controlling a computer through the process of programming. You may even discover that you might want to become a programmer.

An important point before we proceed: You will not be a programmer when you finish reading this chapter or even when you finish reading the final chapter. Programming proficiency takes practice and training beyond the scope of this book. However, you will become acquainted with how programmers develop solutions to a variety of problems.

So let’s start:

What Programmers Do

In general, the programmer's job is to convert problem solutions into instructions for the computer. That is, the programmer prepares the instructions of a computer program and runs those instructions on the computer, tests the program to see if it is working properly, and makes corrections to the program. The programmer also writes a report on the program. These activities are all done for the purpose of helping a user fill a need, such as paying employees, billing customers, or admitting students to college.

The programming activities just described could be done, perhaps, as solo activities, but a programmer typically interacts with a variety of people. For example, if a program is part of a system of several programs, the programmer coordinates with other programmers to make sure that the programs fit together well. If you were a programmer, you might also have coordination meetings with users, managers, systems analysts, and with peers who evaluate your work-just as you evaluate theirs.

Let us turn to the programming process.

The Programming Process

Developing a program involves steps similar to any problem-solving task. There are five main ingredients in the programming process:

Defining the problem

Planning the solution

Coding the program

Testing the program

Documenting the program

Let us discuss each of these in turn.

Defining the Problem

Suppose that, as a programmer, you are contacted because your services are needed. You meet with users from the client organization to analyze the problem, or you meet with a systems analyst who outlines the project. Specifically, the task of defining the problem consists of identifying what it is you know (input-given data), and what it is you want to obtain (output-the result). Eventually, you produce a written agreement that, among other things, specifies the kind of input, processing, and output required. This is not a simple process.

Planning the Solution

Two common ways of planning the solution to a problem are to draw a flowchart and to write pseudocode, or possibly both. Essentially, a flowchart is a pictorial representation of a step-by-step solution to a problem. It consists of arrows representing the direction the program takes and boxes and other symbols representing actions. It is a map of what your program is going to do and how it is going to do it. The American National Standards Institute (ANSI) has developed a standard set of flowchart symbols. Figure 1 shows the symbols and how they might be used in a simple flowchart of a common everyday act-preparing a letter for mailing.

Pseudocode is an English-like nonstandard language that lets you state your solution with more precision than you can in plain English but with less precision than is required when using a formal programming language. Pseudocode permits you to focus on the program logic without having to be concerned just yet about the precise syntax of a particular programming language. However, pseudocode is not executable on the computer. We will illustrate these later in this chapter, when we focus on language examples.

Coding the Program

As the programmer, your next step is to code the program-that is, to express your solution in a programming language. You will translate the logic from the flowchart or pseudocode-or some other tool-to a programming language. As we have already noted, a programming language is a set of rules that provides a way of instructing the computer what operations to perform. There are many programming languages: BASIC, COBOL, Pascal, FORTRAN, and C are some examples. You may find yourself working with one or more of these. We will discuss the different types of languages in detail later in this chapter.

Although programming languages operate grammatically, somewhat like the English language, they are much more precise. To get your program to work, you have to follow exactly the rules-the syntax-of the language you are using. Of course, using the language correctly is no guarantee that your program will work, any more than speaking grammatically correct English means you know what you are talking about. The point is that correct use of the language is the required first step. Then your coded program must be keyed, probably using a terminal or personal computer, in a form the computer can understand.

One more note here: Programmers usually use a text editor, which is somewhat like a word processing program, to create a file that contains the program. However, as a beginner, you will probably want to write your program code on paper first.

Testing the Program

Some experts insist that a well-designed program can be written correctly the first time. In fact, they assert that there are mathematical ways to prove that a program is correct. However, the imperfections of the world are still with us, so most programmers get used to the idea that their newly written programs probably have a few errors. This is a bit discouraging at first, since programmers tend to be precise, careful, detail-oriented people who take pride in their work. Still, there are many opportunities to introduce mistakes into programs, and you, just as those who have gone before you, will probably find several of them.

Documenting the Program

Documenting is an ongoing, necessary process, although, as many programmers are, you may be eager to pursue more exciting computer-centered activities. Documentation is a written detailed description of the programming cycle and specific facts about the program. Typical program documentation materials include the origin and nature of the problem, a brief narrative description of the program, logic tools such as flowcharts and pseudocode, data-record descriptions, program listings, and testing results. Comments in the program itself are also considered an essential part of documentation. Many programmers document as they code. In a broader sense, program documentation can be part of the documentation for an entire system.

Programming as a Career

There is a shortage of qualified personnel in the computer field. Before you join their ranks, consider the advantages of the computer field and what it takes to succeed in it.

The Joys of the Field Although many people make career changes into the computer field, few choose to leave it. In fact, surveys of computer professionals, especially programmers, consistently report a high level of job satisfaction. There are several reasons for this contentment. One is the challenge-most jobs in the computer industry are not routine. Another is security, since established computer professionals can usually find work. And that work pays well-you will probably not be rich, but you should be comfortable. The computer industry has historically been a rewarding place for women and minorities. And, finally, the industry holds endless fascination since it is always changing.

What It Takes You need, of course, some credentials, most often a two- or four-year degree in computer information systems or computer science. The requirements and salaries vary by the organization and the region, so we will not dwell on these here. Beyond that, the person most likely to land a job and move up the career ladder is the one with excellent communication skills, both oral and written . These are also the qualities that can be observed by potential employers in an interview. Promotions are sometimes tied to advanced degrees (an M.B.A. or an M.S. in computer science).

Open Doors The overall outlook for the computer field is promising. The Bureau of Labor Statistics shows, through the year 2010, a 72 percent increase in programmers and a 69 percent increase in system use today, and we will discuss the most popular ones later In the chapter. Before we turn to specific languages, however, we need to discuss levels of language.

Choosing a Language

How do you choose the language with which to write your program? There are several possibilities: In a work environment, your manager may decree that everyone on your project will use a certain language. You may use a certain language, particularly in a business environment, based on the need to interface with other programs; if two programs are to work together, it is easiest if they are written in the same language. You may choose a language based on its suitability for the task. For example, a business program that handles large files may be best written in the business language COBOL. If a program is to be run on different computers, it must be written in a language that is portable-suitable on each type of computer-so that the program need be written only once. You may be limited by the availability of the language. Not all languages are available in all installations or on all computers. The language may be limited to the expertise of the programmer; that is, the program may have to be written in a language the available programmer knows. Perhaps the simplest reason, one that applies to many amateur programmers, is that they know the language called BASIC because it came with-or was inexpensively purchased with-their personal computers.

Nazar 2 days ago

awesome website. thank you!

0
Reply
Natalia 2 days ago

Amazing!!

0
Reply
Tatsiana 2 days ago

i loved this article!

3
Reply